高级检索
当前位置: 首页 > 详情页

Resveratrol accelerates wound healing by attenuating oxidative stress-induced impairment of cell proliferation and migration

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

机构: [1]Wuhan Univ, Wuhan Hosp 3, Inst Burns, Tongren Hosp, Wuhan 430060, Peoples R China
出处:
ISSN:

关键词: Resveratrol Oxidative stress Nrf2 Mn-SOD

摘要:
Background: Impaired wound healing, which is due to various external and internal factors that are involved in wound pathophysiology, leads to high rates of morbidity and mortality worldwide. Oxidative stress injury is an important factor that affects wound healing by changing the whole healing process. So, resveratrol, a dietary fruits polyphenol, which is known for its antioxidant properties, maybe the candidate to accelerate the wound-healing process. Methods: The Human Umbilical Vein Endothelial Cells (HUVECs) was used for in vitro experiments to evaluate the effect of resveratrol on hyperglycemia-induced gene expression, oxidative stress and cell proliferation. The diabetic rat model was used to evaluate the effect of resveratrol on cutaneous burn injury healing process. Results: Increases in H2O2 decreased cell viability with the 0-800 mM concentration range, and resveratrol could protect HUVECs against H2O2-induced injury. The scratched wound closed rate in H2O2 group was significantly smaller than the Control group (p < 0.05) and Resveratrol + H2O2 group (p < 0.05). The fluorescence intensity of ROS was lower in Control and Resveratrol + H2O2 groups than H2O2 group. Correspondingly, compared to H2O2 group, the expressions of Mn-SOD and nuclear Nrf2 (N-Nrf2) was up-regulated in Resveratrol + H2O2 group (p < 0.05). In vivo, compared with the saline group, using resveratrol could significantly accelerate wound healing of rats on Day 14 (p < 0.05) and make the regenerated skin structure more complete and inflammatory response lower. Moreover, the expressions of Mn-SOD was significantly up-regulated after using resveratrol. Conclusions: Resveratrol has the positive effects on promoting the acceleration and quality of skin wound healing, which maybe at least in part caused by the up-regulation of nuclear Nrf2 and Mn-SOD that subsequently attenuated oxidative stress. (c) 2020 Published by Elsevier Ltd.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2020]版:
大类 | 4 区 医学
小类 | 3 区 皮肤病学 3 区 外科 4 区 危重病医学
最新[2023]版:
大类 | 3 区 医学
小类 | 2 区 皮肤病学 3 区 外科 4 区 危重病医学
JCR分区:
出版当年[2019]版:
Q2 SURGERY Q3 DERMATOLOGY Q3 CRITICAL CARE MEDICINE
最新[2023]版:
Q1 SURGERY Q2 CRITICAL CARE MEDICINE Q2 DERMATOLOGY

影响因子: 最新[2023版] 最新五年平均 出版当年[2019版] 出版当年五年平均 出版前一年[2018版] 出版后一年[2020版]

第一作者:
第一作者机构: [1]Wuhan Univ, Wuhan Hosp 3, Inst Burns, Tongren Hosp, Wuhan 430060, Peoples R China
共同第一作者:
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:21169 今日访问量:0 总访问量:1219 更新日期:2025-01-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学附属北京同仁医院 技术支持:重庆聚合科技有限公司 地址:北京市东城区东交民巷1号(100730)