高级检索
当前位置: 首页 > 详情页

Integration of single-cell and bulk RNA sequencing data reveals key cell types and regulators in traumatic brain injury

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE ◇ EI

机构: [1]Shanghai Jiao Tong Univ, Sch Med, Tongren Hosp, Dept Neurosurg, Shanghai 200336, Peoples R China [2]Fudan Univ, Pudong Med Ctr, Shanghai Pudong Hosp, Dept Neurosurg, Shanghai 201399, Peoples R China [3]Shanghai Jiao Tong Univ, Sch Med, Tongren Hosp, Dept Neurol, Shanghai 200336, Peoples R China [4]Shanghai Jiao Tong Univ, Sch Med, Shanghai Peoples Hosp 9, Dept Neurosurg, Shanghai 200025, Peoples R China
出处:
ISSN:

关键词: traumatic brain injury single-cell RNA-seq cell-cell communication TYROBP causal network microglia

摘要:
Traumatic brain injury (TBI) is a leading cause of disability and mortality worldwide, whose symptoms ranging from mild to severe, even life-threatening. However, specific cell types and key regulators involved in traumatic brain injury have not been well elucidated. In this study, utilizing single-cell RNA-seq (scRNA-seq) data from mice with TBI, we have successfully identified and characterized 13 cell populations including astrocytes, oligodendrocyte, newly formed oligodendrocytes, microglia, two types of endothelial cells, five types of excitatory and two types of inhibitory neurons. Differential expression analysis and gene set enrichment analysis (GSEA) revealed the upregulation of microglia and endothelial markers, along with the downregulation of markers of excitatory neurons in TBI. The cell-cell communication analysis revealed that microglia and endothelial cell might interact through the interaction of Icam1-Il2rg and C1qa-Cd93, and microglia might also communicate with each other via Icam1-Itagm. The autocrine ligand-receptor in microglia might result in activation of TYROBP causal network via Icam1-Itgam. The cell-cell contact between microglia and endothelial cell might activate integrin signaling pathways. Moreover, we also found that genes involved in microglia activation were highly downregulated in Tyrobp/Dap12-deficien network in microglia might be a candidate therapeutic target in TBI. In contrast, the excitatory neurons were involved in maintaining normal brain function, and their inactivation might cause dysfunction of nervous system in TBI patients. In conclusion, the present study has discerned major cell types such as microglia, endothelial cells and excitatory neurons, and revealed key regulator such as TYROBP, C1QA, and CD93 in TBI, which shall improve our understanding of the pathogenesis of TBI.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2020]版:
大类 | 4 区 工程技术
小类 | 4 区 数学与计算生物学
最新[2025]版:
JCR分区:
出版当年[2019]版:
Q4 MATHEMATICAL & COMPUTATIONAL BIOLOGY
最新[2023]版:

影响因子: 最新[2023版] 最新五年平均 出版当年[2019版] 出版当年五年平均 出版前一年[2018版] 出版后一年[2020版]

第一作者:
第一作者机构: [1]Shanghai Jiao Tong Univ, Sch Med, Tongren Hosp, Dept Neurosurg, Shanghai 200336, Peoples R China
共同第一作者:
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:25463 今日访问量:0 总访问量:1498 更新日期:2025-06-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学附属北京同仁医院 技术支持:重庆聚合科技有限公司 地址:北京市东城区东交民巷1号(100730)