高级检索
当前位置: 首页 > 详情页

Computer Audition for Fighting the SARS-CoV-2 Corona Crisis-Introducing the Multitask Speech Corpus for COVID-19

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE ◇ EI

机构: [1]Beijing Inst Technol, Inst Engn Med, Grp Audit Intelligent Med, Beijing 100081, Peoples R China [2]Univ Augsburg, Chair Embedded Intelligence Hlth Care & Wellbeing, D-86159 Augsburg, Germany [3]Univ Tokyo, Grad Sch Educ, Educ Physiol Lab, Tokyo 1130033, Japan [4]Huazhong Univ Sci & Technol, Wuhan Union Hosp, Tongji Med Coll, Dept Hand Surg, Wuhan 430074, Peoples R China [5]Univ Cambridge, Mobile Syst Grp, Cambridge CB2 1TN, England [6]Huazhong Univ Sci & Technol, Cent Hosp Wuhan, Tongji Med Coll, Dept Plast Surg, Wuhan 430074, Peoples R China [7]Wuhan Univ, Wuhan Hosp 3, Dept Plast Surg, Wuhan 430072, Peoples R China [8]Wuhan Univ, Tongren Hosp, Wuhan 430072, Peoples R China [9]Imperial Coll London, GLAM Grp Language Audio & Mus, London SW7 2BU, England
出处:
ISSN:

关键词: COVID-19 Databases Task analysis Internet of Things Monitoring Smart phones Social factors Computer audition coronavirus disease 2019 (COVID-19) deep learning Internet of Medical Things (IoMT) machine learning

摘要:
Computer audition (CA) has experienced a fast development in the past decades by leveraging advanced signal processing and machine learning techniques. In particular, for its noninvasive and ubiquitous character by nature, CA-based applications in healthcare have increasingly attracted attention in recent years. During the tough time of the global crisis caused by the coronavirus disease 2019 (COVID-19), scientists and engineers in data science have collaborated to think of novel ways in prevention, diagnosis, treatment, tracking, and management of this global pandemic. On the one hand, we have witnessed the power of 5G, Internet of Things, big data, computer vision, and artificial intelligence in applications of epidemiology modeling, drug and/or vaccine finding and designing, fast CT screening, and quarantine management. On the other hand, relevant studies in exploring the capacity of CA are extremely lacking and underestimated. To this end, we propose a novel multitask speech corpus for COVID-19 research usage. We collected 51 confirmed COVID-19 patients' in-the-wild speech data in Wuhan city, China. We define three main tasks in this corpus, i.e., three-category classification tasks for evaluating the physical and/or mental status of patients, i.e., sleep quality, fatigue, and anxiety. The benchmarks are given by using both classic machine learning methods and state-of-the-art deep learning techniques. We believe this study and corpus cannot only facilitate the ongoing research on using data science to fight against COVID-19, but also the monitoring of contagious diseases for general purpose.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2020]版:
大类 | 1 区 工程技术
小类 | 1 区 计算机:信息系统 1 区 工程:电子与电气 1 区 电信学
最新[2025]版:
大类 | 2 区 计算机科学
小类 | 1 区 计算机:信息系统 1 区 电信学 2 区 工程:电子与电气
JCR分区:
出版当年[2019]版:
Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Q1 TELECOMMUNICATIONS Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
最新[2023]版:
Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Q1 ENGINEERING, ELECTRICAL & ELECTRONIC Q1 TELECOMMUNICATIONS

影响因子: 最新[2023版] 最新五年平均 出版当年[2019版] 出版当年五年平均 出版前一年[2018版] 出版后一年[2020版]

第一作者:
第一作者机构: [1]Beijing Inst Technol, Inst Engn Med, Grp Audit Intelligent Med, Beijing 100081, Peoples R China
共同第一作者:
通讯作者:
通讯机构: [7]Wuhan Univ, Wuhan Hosp 3, Dept Plast Surg, Wuhan 430072, Peoples R China [8]Wuhan Univ, Tongren Hosp, Wuhan 430072, Peoples R China
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:25463 今日访问量:0 总访问量:1498 更新日期:2025-06-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学附属北京同仁医院 技术支持:重庆聚合科技有限公司 地址:北京市东城区东交民巷1号(100730)