高级检索
当前位置: 首页 > 详情页

Reinforcing Gelatin Hydrogels via In Situ Phase Separation and Enhanced Interphase Bonding for Advanced 3D Fabrication

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE ◇ 自然指数

机构: [1]Shanghai Jiao Tong Univ, Sch Biomed Engn, Shanghai 200240, Peoples R China [2]Shanghai Jiao Tong Univ, Shanghai Gen Hosp, Sch Med, Shanghai 200080, Peoples R China [3]Shanghai Jiao Tong Univ, Tongren Hosp, Sch Med, Dept Pharm, Shanghai 200336, Peoples R China [4]Guangdong Prov Peoples Hosp, Burn Plast Wound Repair Surg Ganzhou Hosp, Ganzhou 341000, Peoples R China
出处:
ISSN:

关键词: 3D printing biomaterials gelatin hydrogels mechanical performance tissue engineering

摘要:
Gelatin hydrogels (e.g., methacrylated gelatin gel, abbreviated GelMA gel) have garnered significant attention in tissue engineering and therapeutic drug and cell delivery due to their complete degradability and intrinsic ability to support cell adhesion. However, their practical applications are often constrained by their poor mechanical performance, which stems from their single network structure. This limitation poses significant challenges in load-bearing scenarios and restricts their use in advanced biofabrication technologies, where robust mechanical properties are essential. Here a hydrogel is developed composed entirely of gelatin using a phototriggered transient-radical and persistent-radical coupling (PTPC) reaction to achieve an optimized microstructure. This hydrogel features a phase-separated structure with enhanced interfacial bonding, significantly improving mechanical performance compared to conventional GelMA gels. Notably, this approach preserves the inherent properties of gelatin, including biocompatibility, cell adhesion, and degradability, thereby extending its applicability in the biomedical field, particularly in advanced biofabrication methods such as 3D printing. This approach offers a superior solution to meet the complex demands of sophisticated biomanufacturing technologies, expanding the potential applications of gelatin hydrogels in the biomedical field.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2025]版:
大类 | 1 区 材料科学
小类 | 1 区 化学:综合 1 区 材料科学:综合 1 区 纳米科技 1 区 物理:应用 1 区 物理:凝聚态物理
最新[2025]版:
大类 | 1 区 材料科学
小类 | 1 区 化学:综合 1 区 材料科学:综合 1 区 纳米科技 1 区 物理:应用 1 区 物理:凝聚态物理
JCR分区:
出版当年[2023]版:
Q1 CHEMISTRY, MULTIDISCIPLINARY Q1 CHEMISTRY, PHYSICAL Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Q1 NANOSCIENCE & NANOTECHNOLOGY Q1 PHYSICS, APPLIED Q1 PHYSICS, CONDENSED MATTER
最新[2024]版:
Q1 CHEMISTRY, MULTIDISCIPLINARY Q1 CHEMISTRY, PHYSICAL Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Q1 NANOSCIENCE & NANOTECHNOLOGY Q1 PHYSICS, APPLIED Q1 PHYSICS, CONDENSED MATTER

影响因子: 最新[2024版] 最新五年平均 出版当年[2023版] 出版当年五年平均 出版前一年[2022版] 出版后一年[2024版]

第一作者:
第一作者机构: [1]Shanghai Jiao Tong Univ, Sch Biomed Engn, Shanghai 200240, Peoples R China
共同第一作者:
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:28508 今日访问量:0 总访问量:1584 更新日期:2025-09-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学附属北京同仁医院 技术支持:重庆聚合科技有限公司 地址:北京市东城区东交民巷1号(100730)