高级检索
当前位置: 首页 > 详情页

Nano-Confined Hydrogel Microspheres with Programmable Mechanics and Molecular Lubricity

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

机构: [1]Shanghai Jiao Tong Univ, Shanghai Inst Traumatol & Orthopaed, Shanghai Key Lab Prevent & Treatment Bone & Joint, Dept Orthopaed,Ruijin Hosp,Sch Med, 197 Ruijin 2nd Rd, Shanghai 200025, Peoples R China [2]Shanghai Jiao Tong Univ, Shanghai Key Lab Flexible Med Robot, Dept Orthopaed,Ctr Spinal Minimally Invas Res, Inst Med Robot,Tongren Hosp,Sch Med, Shanghai 200336, Peoples R China
出处:
ISSN:

关键词: cartilage lubrication microfluidic microspheres nano enhancement osteoarthritis spatial confinement

摘要:
The simultaneous integration of high elasticity and lubricity-hallmarks of biological tissues-remains a fundamental challenge in synthetic hydrogels due to the intrinsic trade-off between "dehydration-induced" elasticity and "hydration-dependent" lubrication. Herein, inspired by the dynamic architecture of living systems, the construction of "living" biodegradable hydrogel microspheres is reported that reconcile this contradiction through internal nano-reinforcement and external molecular lubrication. Crystalline disc-like Laponite nanosheets are intercalated within GelMA networks, acting as dynamic, spatially confining crosslinkers that inhibit water infiltration and preserve network cohesion. Concurrently, zwitterionic brushes are grafted onto the microsphere surface, forming a robust hydration layer via dynamic charge-dipole interactions to enable long-lasting lubrication. This synergistic design endows the microspheres with tunable elasticity (14-4000 Pa) and adjustable friction coefficients (0.12-0.04), achieving a functional convergence of mechanical resilience and surface lubricity. Experimental evaluations confirm their efficacy in inhibiting excessive mechanical stress-induced calcium ion influx and downstream calcium signaling to prevent chondrocyte damage. This work offers a universal strategy to overcome the elasticity-lubrication paradox in hydrogels, unlocking their potential in biomedical engineering, drug delivery, and soft robotic interfaces.

基金:
语种:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2025]版:
大类 | 2 区 材料科学
小类 | 2 区 化学:综合 2 区 材料科学:综合 2 区 纳米科技 2 区 物理:应用 2 区 物理:凝聚态物理
最新[2025]版:
大类 | 2 区 材料科学
小类 | 2 区 化学:综合 2 区 材料科学:综合 2 区 纳米科技 2 区 物理:应用 2 区 物理:凝聚态物理
JCR分区:
出版当年[2023]版:
Q1 CHEMISTRY, MULTIDISCIPLINARY Q1 CHEMISTRY, PHYSICAL Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Q1 NANOSCIENCE & NANOTECHNOLOGY Q1 PHYSICS, APPLIED Q1 PHYSICS, CONDENSED MATTER
最新[2024]版:
Q1 CHEMISTRY, MULTIDISCIPLINARY Q1 CHEMISTRY, PHYSICAL Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Q1 NANOSCIENCE & NANOTECHNOLOGY Q1 PHYSICS, APPLIED Q1 PHYSICS, CONDENSED MATTER

影响因子: 最新[2024版] 最新五年平均 出版当年[2023版] 出版当年五年平均 出版前一年[2022版] 出版后一年[2024版]

第一作者:
第一作者机构: [2]Shanghai Jiao Tong Univ, Shanghai Key Lab Flexible Med Robot, Dept Orthopaed,Ctr Spinal Minimally Invas Res, Inst Med Robot,Tongren Hosp,Sch Med, Shanghai 200336, Peoples R China
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:28994 今日访问量:0 总访问量:1619 更新日期:2025-10-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学附属北京同仁医院 技术支持:重庆聚合科技有限公司 地址:北京市东城区东交民巷1号(100730)