高级检索
当前位置: 首页 > 详情页

Automatic Artery/Vein Classification Using a Vessel-Constraint Network for Multicenter Fundus Images

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

机构: [1]Beihang Univ, Sch Biol Sci & Med Engn, Beijing, Peoples R China [2]Beihang Univ, Hefei Innovat Res Inst, Hefei, Peoples R China [3]Beihang Univ, Beijing Adv Innovat Ctr Biomed Engn, Beijing, Peoples R China [4]Anhui Med Univ, Sch Biomed Engn, Hefei, Peoples R China [5]Capital Med Univ, Beijing Inst Ophthalmol, Beijing Tongren Hosp, Beijing Ophthalmol & Visual Sci Key Lab, Beijing, Peoples R China [6]Heidelberg Univ, Med Fac Mannheim, Dept Ophthalmol, Mannheim, Germany [7]Beihang Univ, Beijing Adv Innovat Ctr Big Data Based Precis Med, Beijing, Peoples R China
出处:
ISSN:

关键词: vessel constraint artery vein classification vessel segmentation multi-center data fusion

摘要:
Retinal blood vessel morphological abnormalities are generally associated with cardiovascular, cerebrovascular, and systemic diseases, automatic artery/vein (A/V) classification is particularly important for medical image analysis and clinical decision making. However, the current method still has some limitations in A/V classification, especially the blood vessel edge and end error problems caused by the single scale and the blurred boundary of the A/V. To alleviate these problems, in this work, we propose a vessel-constraint network (VC-Net) that utilizes the information of vessel distribution and edge to enhance A/V classification, which is a high-precision A/V classification model based on data fusion. Particularly, the VC-Net introduces a vessel-constraint (VC) module that combines local and global vessel information to generate a weight map to constrain the A/V features, which suppresses the background-prone features and enhances the edge and end features of blood vessels. In addition, the VC-Net employs a multiscale feature (MSF) module to extract blood vessel information with different scales to improve the feature extraction capability and robustness of the model. And the VC-Net can get vessel segmentation results simultaneously. The proposed method is tested on publicly available fundus image datasets with different scales, namely, DRIVE, LES, and HRF, and validated on two newly created multicenter datasets: Tongren and Kailuan. We achieve a balance accuracy of 0.9554 and F1 scores of 0.7616 and 0.7971 for the arteries and veins, respectively, on the DRIVE dataset. The experimental results prove that the proposed model achieves competitive performance in A/V classification and vessel segmentation tasks compared with state-of-the-art methods. Finally, we test the Kailuan dataset with other trained fusion datasets, the results also show good robustness. To promote research in this area, the Tongren dataset and source code will be made publicly available. The dataset and code will be made available at https://github.com/huawang123/VC-Net.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2020]版
大类 | 2 区 生物
小类 | 2 区 发育生物学 3 区 细胞生物学
最新[2023]版:
大类 | 2 区 生物学
小类 | 2 区 发育生物学 3 区 细胞生物学
JCR分区:
出版当年[2019]版:
Q1 DEVELOPMENTAL BIOLOGY Q2 CELL BIOLOGY
最新[2023]版:
Q1 DEVELOPMENTAL BIOLOGY Q2 CELL BIOLOGY

影响因子: 最新[2023版] 最新五年平均 出版当年[2019版] 出版当年五年平均 出版前一年[2018版] 出版后一年[2020版]

第一作者:
第一作者机构: [1]Beihang Univ, Sch Biol Sci & Med Engn, Beijing, Peoples R China [2]Beihang Univ, Hefei Innovat Res Inst, Hefei, Peoples R China [3]Beihang Univ, Beijing Adv Innovat Ctr Biomed Engn, Beijing, Peoples R China [4]Anhui Med Univ, Sch Biomed Engn, Hefei, Peoples R China
通讯作者:
通讯机构: [1]Beihang Univ, Sch Biol Sci & Med Engn, Beijing, Peoples R China [2]Beihang Univ, Hefei Innovat Res Inst, Hefei, Peoples R China [3]Beihang Univ, Beijing Adv Innovat Ctr Biomed Engn, Beijing, Peoples R China [4]Anhui Med Univ, Sch Biomed Engn, Hefei, Peoples R China [7]Beihang Univ, Beijing Adv Innovat Ctr Big Data Based Precis Med, Beijing, Peoples R China
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:21169 今日访问量:0 总访问量:1219 更新日期:2025-01-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学附属北京同仁医院 技术支持:重庆聚合科技有限公司 地址:北京市东城区东交民巷1号(100730)