高级检索
当前位置: 首页 > 详情页

Machine Learning of Histomorphological Features Predict Response to Neoadjuvant Therapy in Locally Advanced Rectal Cancer

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

机构: [1]Navy Med Univ, Changzheng Hosp, Dept Colorectal Surg, Shanghai, Peoples R China [2]Shanghai Jiao Tong Univ, Dept Automat, Shanghai, Peoples R China [3]Navy Med Univ, Changzheng Hosp, Dept Pathol, Shanghai, Peoples R China [4]Shanghai Jiao Tong Univ, Tongren Hosp, Dept Dermatol, Sch Med, Shanghai, Peoples R China
出处:
ISSN:

关键词: Locally advanced rectal cancer Machine learning Neoadjuvant Therapy Treatment response

摘要:
Aim We hypothesize that machine learning of histomorphological features can predict response to neoadjuvant therapy (NAT) in locally advanced rectal cancer (LARC). Method This retrospective study included 146 LARC patients who received NAT followed by surgery. The pathologists scanned the H&E slides of pretreatment tumor biopsy into whole slide images (WSIs). We randomly split patients into the primary and validation sets with a ratio of 80%:20%. We cut the WSIs into smaller parts (sample amount: 200-500) and used a convolutional neural network (CNN) to process these blocks directly. Then, a graph neural network (GNN) was applied to train the model in the primary set. The independent validation set was used to assess the performance of the model. Result Our model could provide indicative information to identify the patients who were most likely to benefit from NAT. When the sample amount reached 500, the tile-level classifier for distinguishing poor response from good response produced an AUC of 0.779 in the primary set and 0.733 in the validation set. Conclusion In this pilot study, we propose a novel predictive model of therapeutic response to NAT in LARC using a routine diagnostic tool employed in daily practice.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2022]版:
大类 | 3 区 医学
小类 | 3 区 外科 3 区 胃肠肝病学
最新[2025]版:
大类 | 3 区 医学
小类 | 3 区 外科 4 区 胃肠肝病学
JCR分区:
出版当年[2021]版:
Q2 SURGERY Q3 GASTROENTEROLOGY & HEPATOLOGY
最新[2023]版:
Q2 SURGERY Q3 GASTROENTEROLOGY & HEPATOLOGY

影响因子: 最新[2023版] 最新五年平均 出版当年[2021版] 出版当年五年平均 出版前一年[2020版] 出版后一年[2022版]

第一作者:
第一作者机构: [1]Navy Med Univ, Changzheng Hosp, Dept Colorectal Surg, Shanghai, Peoples R China
共同第一作者:
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:23549 今日访问量:0 总访问量:1282 更新日期:2025-04-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学附属北京同仁医院 技术支持:重庆聚合科技有限公司 地址:北京市东城区东交民巷1号(100730)