高级检索
当前位置: 首页 > 详情页

Using Machine Learning to Predict Postoperative Liver Dysfunction After Aortic Arch Surgery

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

机构: [1]Chinese Acad Med Sci & Peking Union Med Coll, Fuwai Hosp, Natl Ctr Cardiovasc Dis, Dept Anesthesiol, Beijing, Peoples R China [2]Capital Med Univ, Beijing Tongren Hosp, Dept Anesthesiol, 1 Dongjiaominxiang, Beijing 100730, Peoples R China
出处:
ISSN:

关键词: Key Words postoperative liver dysfunction machine learning cardiopulmonary bypass aortic arch surgery

摘要:
Objectives: The study compared machine-learning models with traditional logistic regression to predicting liver outcomes after aortic arch surgery. Design: Retrospective review from January 2013 to May 2017. Setting: Fuwai Hospital. Participants: The study comprised 672 consecutive patients who had undergone aortic arch surgery. Measurements and Main Results: Three machine-learning methods were compared with logistic regression with regard to the prediction of postoperative liver dysfunction (PLD) after aortic arch surgery. The perioperative characteristics, including the patients' baseline medical condition and intraoperative data, were analyzed. The performance of the models was assessed using the area under the receiver operating characteristic curve. Naive Bayes had the best discriminative ability for the prediction of PLD (area under the receiver operating characteristic curve = 0.77) compared with random forest (0.76), support vector machine (0.73), and logistic regression (0.72). The primary endpoint of PLD was observed in 185 patients (27.5%). The cardiopulmonary bypass time, long surgery time, long aortic clamp time, high preoperative bilirubin value, and low rectal temperature were strongly associated with the development of PLD after aortic arch surgery. Conclusion: The machine-learning method of naive Bayes predicts PLD after aortic arch surgery significantly better than traditional logistic regression. (C) 2021 Elsevier Inc. All rights reserved.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2020]版:
大类 | 4 区 医学
小类 | 4 区 麻醉学 4 区 心脏和心血管系统 4 区 外周血管病 4 区 呼吸系统
最新[2023]版:
大类 | 4 区 医学
小类 | 4 区 麻醉学 4 区 心脏和心血管系统 4 区 外周血管病 4 区 呼吸系统
JCR分区:
出版当年[2019]版:
Q3 PERIPHERAL VASCULAR DISEASE Q3 RESPIRATORY SYSTEM Q3 ANESTHESIOLOGY Q3 CARDIAC & CARDIOVASCULAR SYSTEMS
最新[2023]版:
Q2 RESPIRATORY SYSTEM Q2 ANESTHESIOLOGY Q2 CARDIAC & CARDIOVASCULAR SYSTEMS Q2 PERIPHERAL VASCULAR DISEASE

影响因子: 最新[2023版] 最新五年平均 出版当年[2019版] 出版当年五年平均 出版前一年[2018版] 出版后一年[2020版]

第一作者:
第一作者机构: [1]Chinese Acad Med Sci & Peking Union Med Coll, Fuwai Hosp, Natl Ctr Cardiovasc Dis, Dept Anesthesiol, Beijing, Peoples R China
共同第一作者:
通讯作者:
通讯机构: [2]Capital Med Univ, Beijing Tongren Hosp, Dept Anesthesiol, 1 Dongjiaominxiang, Beijing 100730, Peoples R China [*1]Department of Anesthesiology, Beijing Tongren Hospital, Capital Medical University, No. 1 Dongjiaominxiang, Dongcheng District, 100730, Beijing, China
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:21173 今日访问量:0 总访问量:1219 更新日期:2025-01-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学附属北京同仁医院 技术支持:重庆聚合科技有限公司 地址:北京市东城区东交民巷1号(100730)