高级检索
当前位置: 首页 > 详情页

Retinal image enhancement with artifact reduction and structure retention

文献详情

资源类型:
WOS体系:

收录情况: ◇ SCIE

机构: [1]Beijing Inst Technol, Beijing 100081, Peoples R China [2]Capital Med Univ, Beijing Inst Ophthalmol, Beijing Tongren Hosp, Beijing 100730, Peoples R China [3]Henan Univ, Sch Artificial Intelligence, Zhengzhou 450046, Peoples R China
出处:
ISSN:

关键词: Retinal image enhancement Generative adversarial networks High frequency

摘要:
Enhancement of low-quality retinal fundus images is beneficial to clinical diagnosis of ophthalmic diseases and computer-aided analysis. Enhancement accuracy is a challenge for image generation models, especially when there is no supervision by paired images. To reduce artifacts and retain structural consistency for accuracy improvement, we develop an unpaired image generation method for fundus image enhancement with the proposed high-frequency extractor and feature descriptor. Specifically, we summarize three causes of tiny vessel-like artifacts which always appear in other image generation methods. A high frequency prior is incorporated into our model to reduce artifacts by the proposed high-frequency extractor. In addition, the feature descriptor is trained alternately with the generator using segmentation datasets and generated image pairs to ensure the fidelity of the image structure. Pseudo-label loss is proposed to improve the performance of the feature descriptor. Experimental results show that the proposed method performs better than other methods both qualitatively and quantitatively. The enhancement can improve the performance of segmentation and classification in retinal images.(c) 2022 Elsevier Ltd. All rights reserved.

语种:
被引次数:
WOS:
中科院(CAS)分区:
出版当年[2022]版:
大类 | 1 区 计算机科学
小类 | 1 区 工程:电子与电气 1 区 计算机:人工智能
最新[2025]版:
大类 | 1 区 计算机科学
小类 | 1 区 计算机:人工智能 1 区 工程:电子与电气
JCR分区:
出版当年[2021]版:
Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
最新[2023]版:
Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Q1 ENGINEERING, ELECTRICAL & ELECTRONIC

影响因子: 最新[2023版] 最新五年平均 出版当年[2021版] 出版当年五年平均 出版前一年[2020版] 出版后一年[2022版]

第一作者:
第一作者机构: [1]Beijing Inst Technol, Beijing 100081, Peoples R China
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:25471 今日访问量:0 总访问量:1498 更新日期:2025-06-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学附属北京同仁医院 技术支持:重庆聚合科技有限公司 地址:北京市东城区东交民巷1号(100730)