高级检索
当前位置: 首页 > 详情页

An enhancement method for color retinal images based on image formation model

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE ◇ EI

机构: [1]School of Information and Electronics, Beijing Institute of Technology, No.5 South Zhong Guan Cun Street, Haidian District, Beijing 100081, China [2]Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Beijing 100730, China
出处:
ISSN:

关键词: Contrast enhancement Color retinal image Image formation model Medical image processing

摘要:
Background and objective: The good quality of color retinal image is essential for doctors to make a reliable diagnose in clinics. Due to major reasons like acquisition process and retinal diseases, most retinal images can show poor illuminance, blur and low contrast, further impeding the process of identifying the underlying retinal condition. Methods: Image formation model of scattering is proposed to enhance color retinal images in this paper. Two parameters of this model, background illuminance and transmission map, are estimated based on extracted background and foreground. The complex nature of the foreground of a retinal image, involving pixels with both low and high intensity, posed a challenge to the proper extraction of these pixels. Therefore, a new method combining Mahalanobis distance discrimination and global spatial entropy-based contrast enhancement is proposed to extract foreground pixels. It extracts background and foreground in high intensity region and low intensity region respectively and it can perform well in blurry image with tiny intensity range. Results: The proposed method is evaluated using 319 color retinal images from three different databases. Experimental results indicated that the proposed method can perform well on illumination problems, contrast enhancement and color preservation. Conclusion: This study proposes a new method of enhancing overall retinal image and produces better enhancement images than several state-of-the-art algorithms, especially for blurry retinal images. This method can facilitate analysis and reliable diagnosis for both ophthalmologists and computer-aided analysis. (C) 2017 Elsevier B.V. All rights reserved.

语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2016]版:
大类 | 3 区 工程技术
小类 | 3 区 计算机:跨学科应用 3 区 计算机:理论方法 4 区 工程:生物医学 4 区 医学:信息
最新[2023]版:
大类 | 2 区 医学
小类 | 2 区 计算机:跨学科应用 2 区 计算机:理论方法 2 区 工程:生物医学 2 区 医学:信息
JCR分区:
出版当年[2015]版:
Q1 COMPUTER SCIENCE, THEORY & METHODS Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Q2 MEDICAL INFORMATICS Q2 ENGINEERING, BIOMEDICAL
最新[2023]版:
Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Q1 COMPUTER SCIENCE, THEORY & METHODS Q1 ENGINEERING, BIOMEDICAL Q1 MEDICAL INFORMATICS

影响因子: 最新[2023版] 最新五年平均 出版当年[2015版] 出版当年五年平均 出版前一年[2014版] 出版后一年[2016版]

第一作者:
第一作者机构: [1]School of Information and Electronics, Beijing Institute of Technology, No.5 South Zhong Guan Cun Street, Haidian District, Beijing 100081, China
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:21169 今日访问量:0 总访问量:1219 更新日期:2025-01-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学附属北京同仁医院 技术支持:重庆聚合科技有限公司 地址:北京市东城区东交民巷1号(100730)