高级检索
当前位置: 首页 > 详情页

PKRT-Net: Prior knowledge-based relation transformer network for optic cup and disc segmentation

文献详情

资源类型:
WOS体系:

收录情况: ◇ SCIE

机构: [1]Beijing Inst Technol, Sch Med Technol, Beijing 100081, Peoples R China [2]Beijing Inst Technol, Sch Informat & Elect, Beijing 100081, Peoples R China [3]Capital Med Univ, Beijing Tongren Hosp, Beijing Inst Ophthalmol, Beijing Ophthalmol & Visual Sci Key Lab, Beijing, Peoples R China
出处:
ISSN:

关键词: Optic cup segmentation Optic disc segmentation Medical image processing Deep learning

摘要:
Glaucoma causes irreversible vision loss, and early detection of glaucoma is essential to protect the vision of patients. The optic cup (OC) and optic disc (OD) are two critical anatomical structures for glaucoma diagnosis. Methods based on convolutional neural networks (CNNs) have been proposed to extract OC and OD, in which OC extraction is very challenging. However, the clinical prior knowledge is not fully utilized in existing CNN methods, which limits the performance of extracting OC and OD. Besides, CNN methods cannot learn long-range semantic information interaction well due to the intrinsic locality of convolution operations. In this paper, we propose a Prior Knowledge-based Relation Transformer Network (PKRT-Net), which employs the clinical prior knowledge to assist OC segmentation and model efficient long-range relation of spatial features by the transformer. PKRT-Net consists of a dual-branch module, a relation transformer fusion module, and a decoder with weighted fusion. Dual-branch module decouples the fundus image into the vessel feature space and general local feature space; the relation transformer fusion module fuses the clinical prior information with local features to obtain more representative features; the weighted fusion module fuses the multi-scale side-outputs from the decoder with the representation of relation transformer module to improve the segmentation performance. We evaluate our proposed PKRT-Net on three public available OC and OD segmentation datasets (i.e., DrishtiGS, RIM-ONE(r3), and REFUGE). The experimental results demonstrate that our proposed PKRT-Net framework achieves state-of-the-art OC and OD segmentation results on these three public datasets.(c) 2023 Elsevier B.V. All rights reserved.

基金:
语种:
被引次数:
WOS:
中科院(CAS)分区:
出版当年[2022]版:
大类 | 2 区 计算机科学
小类 | 2 区 计算机:人工智能
最新[2023]版:
大类 | 2 区 计算机科学
小类 | 2 区 计算机:人工智能
JCR分区:
出版当年[2021]版:
Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
最新[2023]版:
Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE

影响因子: 最新[2023版] 最新五年平均 出版当年[2021版] 出版当年五年平均 出版前一年[2020版] 出版后一年[2022版]

第一作者:
第一作者机构: [1]Beijing Inst Technol, Sch Med Technol, Beijing 100081, Peoples R China
通讯作者:
通讯机构: [1]Beijing Inst Technol, Sch Med Technol, Beijing 100081, Peoples R China [2]Beijing Inst Technol, Sch Informat & Elect, Beijing 100081, Peoples R China
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:21169 今日访问量:0 总访问量:1219 更新日期:2025-01-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学附属北京同仁医院 技术支持:重庆聚合科技有限公司 地址:北京市东城区东交民巷1号(100730)