高级检索
当前位置: 首页 > 详情页

E-Net: a novel deep learning framework integrating expert knowledge for glaucoma optic disc hemorrhage segmentation

文献详情

资源类型:
WOS体系:

收录情况: ◇ SCIE

机构: [1]Beijing Univ Chem Technol, Dept Math, Beijing 100029, Peoples R China [2]Beijing Inst Technol, Inst Engn Med, Beijing 100081, Peoples R China [3]Beihang Univ, Sch Math Sci, Beijing 100191, Peoples R China [4]Capital Med Univ, Beijing Childrens Hosp, Dept Ophthalmol, Beijing 100045, Peoples R China [5]Capital Med Univ, Beijing Tongren Hosp, Beijing Tongren Eye Ctr, Beijing 100045, Peoples R China
出处:
ISSN:

关键词: Medical image segmentation Deep learning Glaucoma optic disc hemorrhage Expert knowledge

摘要:
Glaucoma is a serious eye disease and glaucoma optic disc hemorrhage (GODH) is an important diagnostic indicator for glaucoma. Deep-learning-based medical image segmentation methods for automatic optic cup and disc segmentation have made tremendous progress. However, when it comes to the segmentation of GODH, classical deep learning technologies face two main challenges: the difficulties in distinguishing GODH from the end points or bending points of blood vessels, and the imbalance between the pixel classes of the target area and the background area. In this paper, we proposed a deep learning framework integrating expert knowledge (E-Net) for the segmentation of GODH in fundus images. This E-Net consisted of a primary network for GODH segmentation and two auxiliary networks for extraction of optic disc (OD) and blood vessels. The segmentation probability maps from the two auxiliary networks were used to improve the segmentation accuracy of GODH, via expert knowledge loss functions and attention mechanism. Moreover, we designed a weighted segmentation accuracy loss function to balance the segmentation accuracy of the target and background region, thus fully mining the substantial information in the fundus images. The proposed E-Net was verified on a GODH dataset from Beijing Tongren Hospital. The experiments showed that the proposed E-Net achieved state-of-the-art results on this dataset.

基金:

基金编号: U1830107 XK2022-02 2019-I-0001-0001 2019-I-0019-0018

语种:
WOS:
中科院(CAS)分区:
出版当年[2022]版:
大类 | 4 区 计算机科学
小类 | 4 区 计算机:信息系统 4 区 工程:电子与电气 4 区 计算机:软件工程 4 区 计算机:理论方法
最新[2025]版:
JCR分区:
出版当年[2021]版:
Q2 COMPUTER SCIENCE, SOFTWARE ENGINEERING Q2 COMPUTER SCIENCE, THEORY & METHODS Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
最新[2023]版:
Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS Q2 COMPUTER SCIENCE, SOFTWARE ENGINEERING Q2 COMPUTER SCIENCE, THEORY & METHODS Q2 ENGINEERING, ELECTRICAL & ELECTRONIC

影响因子: 最新[2023版] 最新五年平均 出版当年[2021版] 出版当年五年平均 出版前一年[2020版] 出版后一年[2022版]

第一作者:
第一作者机构: [1]Beijing Univ Chem Technol, Dept Math, Beijing 100029, Peoples R China
通讯作者:
通讯机构: [4]Capital Med Univ, Beijing Childrens Hosp, Dept Ophthalmol, Beijing 100045, Peoples R China [5]Capital Med Univ, Beijing Tongren Hosp, Beijing Tongren Eye Ctr, Beijing 100045, Peoples R China
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:23456 今日访问量:6 总访问量:1282 更新日期:2025-04-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学附属北京同仁医院 技术支持:重庆聚合科技有限公司 地址:北京市东城区东交民巷1号(100730)