高级检索
当前位置: 首页 > 详情页

TC-Net: A joint learning framework based on CNN and vision transformer for multi-lesion medical images segmentation

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

机构: [1]The Faculty of Information Technology, Beijing University of Technology, China [2]The Department of Endocrinology, Beijing Tongren Hospital, China [3]Capital Medical University, China [4]The Beijing Institute of Artificial Intelligence, Beijing University of Technology, China
出处:
ISSN:

关键词: Medical image segmentation Convolutional neural network Vision transformer Class-imbalance

摘要:
With the rapid advancement of medical imaging technology, the demand for accurate segmentation of medical images is increasing. However, most existing methods are unable to capture locality and long-range dependency information in integrated ways for medical images.In this paper, we propose an elegant segmentation framework for medical images named TC-Net, which can utilize both the locality-aware and long-range dependencies in the medical images. As for the locality-aware perspective, we employ a CNN-based encoder and decoder structure. The CNN branch uses the locality of convolution operations to dig out local information in medical images. As for the long-range dependencies, we construct a Transformer branch to focus on the global context. Additionally, we proposed a locality-aware and long-range dependency concatenation strategy (LLCS) to aggregate the feature maps obtained from the two subbranches. Finally, we present a dynamic cyclical focal loss (DCFL) to address the class imbalance problem in multi-lesion segmentation.Comprehensive experiments were conducted on lesion segmentation tasks using two fundus image databases and a skin image database. The TC-Net achieves scores of 0.6985 and 0.5171 in the metric of mean pixel accuracy on the IDRiD and DDR databases, respectively. Moreover, on the skin image database, the TC-Net reached mean pixel accuracy of 0.8886. The experiment results demonstrate that the proposed method achieves better performance than other deep learning segmentation schemes. Furthermore, the proposed DCFL achieves higher performance than other loss functions in multi-lesion segmentation.The proposed TC-Net is a promising new framework for multi-lesion medical image segmentation and many other challenging image segmentation tasks. © 2001 Elsevier Science. All rights reserved.Copyright © 2023 Elsevier Ltd. All rights reserved.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2022]版:
大类 | 2 区 工程技术
小类 | 1 区 数学与计算生物学 2 区 工程:生物医学 2 区 生物学 3 区 计算机:跨学科应用
最新[2023]版:
大类 | 2 区 医学
小类 | 1 区 生物学 1 区 数学与计算生物学 2 区 计算机:跨学科应用 2 区 工程:生物医学
JCR分区:
出版当年[2021]版:
Q1 BIOLOGY Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Q1 ENGINEERING, BIOMEDICAL Q1 MATHEMATICAL & COMPUTATIONAL BIOLOGY
最新[2023]版:
Q1 BIOLOGY Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Q1 ENGINEERING, BIOMEDICAL Q1 MATHEMATICAL & COMPUTATIONAL BIOLOGY

影响因子: 最新[2023版] 最新五年平均 出版当年[2021版] 出版当年五年平均 出版前一年[2020版] 出版后一年[2022版]

第一作者:
第一作者机构: [1]The Faculty of Information Technology, Beijing University of Technology, China
通讯作者:
通讯机构: [1]The Faculty of Information Technology, Beijing University of Technology, China [4]The Beijing Institute of Artificial Intelligence, Beijing University of Technology, China [*1]The Faculty of Information Technology, Beijing University of Technology, China
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:21169 今日访问量:0 总访问量:1219 更新日期:2025-01-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学附属北京同仁医院 技术支持:重庆聚合科技有限公司 地址:北京市东城区东交民巷1号(100730)