高级检索
当前位置: 首页 > 详情页

Identification of Pulmonary Hypertension Animal Models Using a New Evolutionary Machine Learning Framework Based on Blood Routine Indicators

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE ◇ 统计源期刊 ◇ CSCD-C ◇ 卓越:梯队期刊

机构: [1]Wenzhou Univ, Dept Comp Sci & Artificial Intelligence, Wenzhou 325035, Peoples R China [2]Capital Med Univ, Beijing Tongren Hosp, Dept Dermatol, Beijing 100730, Peoples R China [3]Wenzhou Med Univ, Clin Coll 1, Wenzhou 325000, Peoples R China [4]Wenzhou Med Univ, Affiliated Hosp 1, Dept Pulm & Crit Care Med, Wenzhou 325000, Peoples R China
出处:
ISSN:

关键词: Feature selection Pulmonary hypertension Whale optimization algorithm Extreme learning machine

摘要:
Pulmonary Hypertension (PH) is a global health problem that affects about 1% of the global population. Animal models of PH play a vital role in unraveling the pathophysiological mechanisms of the disease. The present study proposes a Kernel Extreme Learning Machine (KELM) model based on an improved Whale Optimization Algorithm (WOA) for predicting PH mouse models. The experimental results showed that the selected blood indicators, including Haemoglobin (HGB), Hematocrit (HCT), Mean, Platelet Volume (MPV), Platelet distribution width (PDW), and Platelet-Large Cell Ratio (P-LCR), were essential for identifying PH mouse models using the feature selection method proposed in this paper. Remarkably, the method achieved 100.0% accuracy and 100.0% specificity in classification, demonstrating that our method has great potential to be used for evaluating and identifying mouse PH models.

基金:

基金编号: 82003831 62076185 U1809209 2020KY177 Y2020002 LZ22F020005 QNYC114

语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2022]版:
大类 | 3 区 计算机科学
小类 | 2 区 工程:综合 3 区 材料科学:生物材料 3 区 机器人学
最新[2023]版:
大类 | 3 区 计算机科学
小类 | 4 区 工程:综合 4 区 材料科学:生物材料 4 区 机器人学
JCR分区:
出版当年[2021]版:
Q2 ENGINEERING, MULTIDISCIPLINARY Q3 ROBOTICS Q4 MATERIALS SCIENCE, BIOMATERIALS
最新[2023]版:
Q1 ENGINEERING, MULTIDISCIPLINARY Q1 ROBOTICS Q2 MATERIALS SCIENCE, BIOMATERIALS

影响因子: 最新[2023版] 最新五年平均 出版当年[2021版] 出版当年五年平均 出版前一年[2020版] 出版后一年[2022版]

第一作者:
第一作者机构: [1]Wenzhou Univ, Dept Comp Sci & Artificial Intelligence, Wenzhou 325035, Peoples R China
共同第一作者:
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:21169 今日访问量:0 总访问量:1219 更新日期:2025-01-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学附属北京同仁医院 技术支持:重庆聚合科技有限公司 地址:北京市东城区东交民巷1号(100730)