高级检索
当前位置: 首页 > 详情页

Matrix regression heterogeneity analysis

文献详情

资源类型:
WOS体系:

收录情况: ◇ SCIE

机构: [1]Univ Chinese Acad Sci, Sch Math Sci, Beijing, Peoples R China [2]Chinese Acad Sci, Key Lab Big Data Min & Knowledge Management, Beijing, Peoples R China [3]Capital Med Univ, Beijing Tongren Hosp, Beijing Tongren Eye Ctr, Beijing Key Lab Ophthalmol & Visual Sci, Beijing, Peoples R China [4]Shanghai Jiao Tong Univ, Sch Math Sci, Shanghai, Peoples R China
出处:
ISSN:

关键词: Heterogeneity analysis Matrix regression Penalized fusion Gene-environment interaction

摘要:
The development of modern science and technology has facilitated the collection of a large amount of matrix data in fields such as biomedicine. Matrix data modeling has been extensively studied, which advances from the naive approach of flattening the matrix into a vector. However, existing matrix modeling methods mainly focus on homogeneous data, failing to handle the data heterogeneity frequently encountered in the biomedical field, where samples from the same study belong to several underlying subgroups, and different subgroups follow different models. In this paper, we focus on regression-based heterogeneity analysis. We propose a matrix data heterogeneity analysis framework, by combining matrix bilinear sparse decomposition and penalized fusion techniques, which enables data-driven subgroup detection, including determining the number of subgroups and subgrouping membership. A rigorous theoretical analysis is conducted, including asymptotic consistency in terms of subgroup detection, the number of subgroups, and regression coefficients. Numerous numerical studies based on simulated and real data have been constructed, showcasing the superior performance of the proposed method in analyzing matrix heterogeneous data.

基金:
语种:
WOS:
中科院(CAS)分区:
出版当年[2023]版:
大类 | 2 区 数学
小类 | 2 区 计算机:理论方法 2 区 统计学与概率论
最新[2025]版:
大类 | 2 区 数学
小类 | 2 区 统计学与概率论 3 区 计算机:理论方法
JCR分区:
出版当年[2022]版:
Q1 STATISTICS & PROBABILITY Q3 COMPUTER SCIENCE, THEORY & METHODS
最新[2023]版:
Q1 STATISTICS & PROBABILITY Q2 COMPUTER SCIENCE, THEORY & METHODS

影响因子: 最新[2023版] 最新五年平均 出版当年[2022版] 出版当年五年平均 出版前一年[2021版] 出版后一年[2023版]

第一作者:
第一作者机构: [1]Univ Chinese Acad Sci, Sch Math Sci, Beijing, Peoples R China [2]Chinese Acad Sci, Key Lab Big Data Min & Knowledge Management, Beijing, Peoples R China
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:23549 今日访问量:2 总访问量:1284 更新日期:2025-04-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学附属北京同仁医院 技术支持:重庆聚合科技有限公司 地址:北京市东城区东交民巷1号(100730)