高级检索
当前位置: 首页 > 详情页

Artificial intelligence on diabetic retinopathy diagnosis: an automatic classification method based on grey level co-occurrence matrix and naive Bayesian model

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

机构: [1]Capital Med Univ, Beijing Inst Ophthalmol, Beijing Tongren Hosp, Beijing 100005, Peoples R China
出处:
ISSN:

关键词: grey level co-occurrence matrix Bayesian textures artificial intelligence receiver operating characteristic curve diabetic retinopathy

摘要:
AIM: To develop an automatic tool on screening diabetic retinopathy (DR) from diabetic patients. METHODS: We extracted textures from eye fundus images of each diabetes subject using grey level co-occurrence matrix method and trained a Bayesian model based on these textures. The receiver operating characteristic (ROC) curve was used to estimate the sensitivity and specificity of the Bayesian model. RESULTS: A total of 1000 eyes fundus images from diabetic patients in which 298 eyes were diagnosed as DR by two ophthalmologists. The Bayesian model was trained using four extracted textures including contrast, entropy, angular second moment and correlation using a training dataset. The Bayesian model achieved a sensitivity of 0.949 and a specificity of 0.928 in the validation dataset. The area under the ROC curve was 0.938, and the 10-fold cross validation method showed that the average accuracy rate is 93.5%. CONCLUSION: Textures extracted by grey level co-occurrence can be useful information for DR diagnosis, and a trained Bayesian model based on these textures can be an effective tool for DR screening among diabetic patients.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2018]版:
大类 | 4 区 医学
小类 | 4 区 眼科学
最新[2023]版:
大类 | 4 区 医学
小类 | 4 区 眼科学
JCR分区:
出版当年[2017]版:
Q4 OPHTHALMOLOGY
最新[2023]版:
Q2 OPHTHALMOLOGY

影响因子: 最新[2023版] 最新五年平均 出版当年[2017版] 出版当年五年平均 出版前一年[2016版] 出版后一年[2018版]

第一作者:
第一作者机构: [1]Capital Med Univ, Beijing Inst Ophthalmol, Beijing Tongren Hosp, Beijing 100005, Peoples R China [*1]Beijing Institute of Ophthalmology, Beijing Tongren Hospital of Capital Medical University, Beijing 100005, China.
通讯作者:
通讯机构: [1]Capital Med Univ, Beijing Inst Ophthalmol, Beijing Tongren Hosp, Beijing 100005, Peoples R China [*1]Beijing Institute of Ophthalmology, Beijing Tongren Hospital of Capital Medical University, Beijing 100005, China.
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:21169 今日访问量:0 总访问量:1219 更新日期:2025-01-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学附属北京同仁医院 技术支持:重庆聚合科技有限公司 地址:北京市东城区东交民巷1号(100730)