高级检索
当前位置: 首页 > 详情页

Joint Learning of Multi-Level Tasks for Diabetic Retinopathy Grading on Low-Resolution Fundus Images

文献详情

资源类型:
WOS体系:

收录情况: ◇ SCIE

机构: [1]Beihang Univ, Beijing 100191, Peoples R China [2]Imperial Coll London, London SW72BX, England [3]BNU HKBU United Int Coll, Zhuhai 519087, Peoples R China [4]Beijing Inst Ophthalmol, Beijing 100730, Peoples R China
出处:
ISSN:

关键词: Task analysis Lesions Image segmentation Retina Medical diagnostic imaging Pathology Correlation Deep neural networks diabetic retinopathy multi-task learning retinal fundus images

摘要:
Diabetic retinopathy (DR) is a leading cause of permanent blindness among the working-age people. Automatic DR grading can help ophthalmologists make timely treatment for patients. However, the existing grading methods are usually trained with high resolution (HR) fundus images, such that the grading performance decreases a lot given low resolution (LR) images, which are common in clinic. In this paper, we mainly focus on DR grading with LR fundus images. According to our analysis on the DR task, we find that: 1) image super-resolution (ISR) can boost the performance of both DR grading and lesion segmentation; 2) the lesion segmentation regions of fundus images are highly consistent with pathological regions for DR grading. Based on our findings, we propose a convolutional neural network (CNN)-based method for joint learning of multi-level tasks for DR grading, called DeepMT-DR, which can simultaneously handle the low-level task of ISR, the mid-level task of lesion segmentation and the high-level task of disease severity classification on LR fundus images. Moreover, a novel task-aware loss is developed to encourage ISR to focus on the pathological regions for its subsequent tasks: lesion segmentation and DR grading. Extensive experimental results show that our DeepMT-DR method significantly outperforms other state-of-the-art methods for DR grading over three datasets. In addition, our method achieves comparable performance in two auxiliary tasks of ISR and lesion segmentation.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2021]版:
大类 | 2 区 工程技术
小类 | 1 区 数学与计算生物学 1 区 医学:信息 2 区 计算机:信息系统 2 区 计算机:跨学科应用
最新[2023]版:
大类 | 2 区 医学
小类 | 1 区 计算机:信息系统 1 区 数学与计算生物学 2 区 计算机:跨学科应用 2 区 医学:信息
JCR分区:
出版当年[2020]版:
Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Q1 MATHEMATICAL & COMPUTATIONAL BIOLOGY Q1 MEDICAL INFORMATICS Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
最新[2023]版:
Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Q1 MATHEMATICAL & COMPUTATIONAL BIOLOGY Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Q1 MEDICAL INFORMATICS

影响因子: 最新[2023版] 最新五年平均 出版当年[2020版] 出版当年五年平均 出版前一年[2019版] 出版后一年[2021版]

第一作者:
第一作者机构: [1]Beihang Univ, Beijing 100191, Peoples R China
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:21166 今日访问量:0 总访问量:1219 更新日期:2025-01-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学附属北京同仁医院 技术支持:重庆聚合科技有限公司 地址:北京市东城区东交民巷1号(100730)