高级检索
当前位置: 首页 > 详情页

Approach to glaucoma diagnosis and prediction based on multiparameter neural network

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

机构: [1]Capital Med Univ, Sch Biomed Engn, Beijing 100069, Peoples R China [2]Capital Med Univ, Beijing Key Lab Fundamental Res Biomech Clin Appl, Beijing 100069, Peoples R China [3]Beihang Univ, Beijing Adv Innovat Ctr Biomed Engn, Sch Biol Sci & Med Engn, Key Lab Biomech & Mechanobiol,Minist Educ, Beijing 100083, Peoples R China [4]Capital Med Univ, Beijing Tongren Hosp, Beijing Tongren Eye Ctr, Beijing 100730, Peoples R China
出处:
ISSN:

关键词: Glaucoma Neural network Trans-laminar cribrosa pressure difference Fractional pressure reserve Computer-aided diagnosis

摘要:
Purpose To investigate the effect of comprehensive factor analysis on the relationship between glaucoma assessment and combined parameters including trans-laminar cribrosa pressure difference (TLCPD) and fractional pressure reserve (FPR). Methods The clinical data of 1029 patients with 15 indicators from the medical records of Beijing Tongren Hospital and 600 cases with 1322 indicators from Beijing Eye Research were collected. The doc2vec method was used to vectorize. The multivariate imputation by chained equations (MICE) method was used to interpolate. The original data combined with TLCPD, combined with FPR, and not combined parameters were respectively applied to train the neural network based on VGG16 and autoencoder to predict glaucoma and to evaluate the effect of combined parameters. Results The accuracy rates used to classify the glaucoma of the two sets reach over 0.90, and the precision rates reach 0.70 and 0.80 respectively. After using TLCPD and FPR for the autoencoder method, the accuracy rates are both close to 1.0, and the precision rates are 0.90 and 0.70 respectively. Conclusion Using the combined parameters of FPR and TLCPD can effectively improve the diagnosis and prediction of glaucoma. Compared with TLCPD, FPR is more suitable for improving the effect of neural network for glaucoma classification.

基金:

基金编号: 10 802 053 7 152 022

语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2022]版:
大类 | 4 区 医学
小类 | 4 区 眼科学
最新[2025]版:
大类 | 4 区 医学
小类 | 4 区 眼科学
JCR分区:
出版当年[2021]版:
Q3 OPHTHALMOLOGY
最新[2023]版:
Q3 OPHTHALMOLOGY

影响因子: 最新[2023版] 最新五年平均 出版当年[2021版] 出版当年五年平均 出版前一年[2020版] 出版后一年[2022版]

第一作者:
第一作者机构: [1]Capital Med Univ, Sch Biomed Engn, Beijing 100069, Peoples R China [2]Capital Med Univ, Beijing Key Lab Fundamental Res Biomech Clin Appl, Beijing 100069, Peoples R China [3]Beihang Univ, Beijing Adv Innovat Ctr Biomed Engn, Sch Biol Sci & Med Engn, Key Lab Biomech & Mechanobiol,Minist Educ, Beijing 100083, Peoples R China
通讯作者:
通讯机构: [1]Capital Med Univ, Sch Biomed Engn, Beijing 100069, Peoples R China [2]Capital Med Univ, Beijing Key Lab Fundamental Res Biomech Clin Appl, Beijing 100069, Peoples R China
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:25471 今日访问量:0 总访问量:1498 更新日期:2025-06-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学附属北京同仁医院 技术支持:重庆聚合科技有限公司 地址:北京市东城区东交民巷1号(100730)