高级检索
当前位置: 首页 > 详情页

Semi-Supervised Dual Stream Segmentation Network for Fundus Lesion Segmentation

文献详情

资源类型:
WOS体系:

收录情况: ◇ SCIE

机构: [1]Soochow Univ, Sch Elect & Informat Engn, Suzhou 215006, Jiangsu, Peoples R China [2]Capital Med Univ, Beijing Tongren Hosp, Beijing Tongren Eye Ctr, Beijing 100730, Peoples R China [3]Capital Med Univ, Beijing Shijingshan Hosp, Dept Ophthalmol, Beijing Shijingshan Teaching Hosp, Beijing, Peoples R China [4]Shanghai Jiao Tong Univ, Shanghai Peoples Hosp 1, Dept Ophthalmol, Shanghai 200080, Peoples R China [5]Shanghai Jiao Tong Univ, Sch Med, Shanghai 200080, Peoples R China
出处:
ISSN:

关键词: Image segmentation Retina Lesions Feature extraction Fuses Streaming media Training Semi-supervised learning generative adversarial network fundus fluorescein angiography optical coherence tomography

摘要:
Accurate segmentation of retinal images can assist ophthalmologists to determine the degree of retinopathy and diagnose other systemic diseases. However, the structure of the retina is complex, and different anatomical structures often affect the segmentation of fundus lesions. In this paper, a new segmentation strategy called a dual stream segmentation network embedded into a conditional generative adversarial network is proposed to improve the accuracy of retinal lesion segmentation. First, a dual stream encoder is proposed to utilize the capabilities of two different networks and extract more feature information. Second, a multiple level fuse block is proposed to decode the richer and more effective features from the two different parallel encoders. Third, the proposed network is further trained in a semi-supervised adversarial manner to leverage from labeled images and unlabeled images with high confident pseudo labels, which are selected by the dual stream Bayesian segmentation network. An annotation discriminator is further proposed to reduce the negativity that prediction tends to become increasingly similar to the inaccurate predictions of unlabeled images. The proposed method is cross-validated in 384 clinical fundus fluorescein angiography images and 1040 optical coherence tomography images. Compared to state-of-the-art methods, the proposed method can achieve better segmentation of retinal capillary non-perfusion region and choroidal neovascularization.

基金:

基金编号: 61971298 61771326 81871352 U20A20170 2018YFA0701700

语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2022]版:
大类 | 1 区 工程技术
小类 | 1 区 核医学 1 区 工程:电子与电气 1 区 成像科学与照相技术 1 区 工程:生物医学 1 区 计算机:跨学科应用
最新[2023]版:
大类 | 1 区 医学
小类 | 1 区 计算机:跨学科应用 1 区 工程:生物医学 1 区 工程:电子与电气 1 区 成像科学与照相技术 1 区 核医学
JCR分区:
出版当年[2021]版:
Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Q1 ENGINEERING, BIOMEDICAL Q1 ENGINEERING, ELECTRICAL & ELECTRONIC Q1 IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
最新[2023]版:
Q1 ENGINEERING, BIOMEDICAL Q1 ENGINEERING, ELECTRICAL & ELECTRONIC Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Q1 IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING

影响因子: 最新[2023版] 最新五年平均 出版当年[2021版] 出版当年五年平均 出版前一年[2020版] 出版后一年[2022版]

第一作者:
第一作者机构: [1]Soochow Univ, Sch Elect & Informat Engn, Suzhou 215006, Jiangsu, Peoples R China
共同第一作者:
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:21173 今日访问量:0 总访问量:1219 更新日期:2025-01-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学附属北京同仁医院 技术支持:重庆聚合科技有限公司 地址:北京市东城区东交民巷1号(100730)