高级检索
当前位置: 首页 > 详情页

Tailored gelatin methacryloyl-based hydrogel with near-infrared responsive delivery of Qiai essential oils boosting reactive oxygen species scavenging, antimicrobial, and anti-inflammatory activities for diabetic wound healing

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

机构: [1]Department of Plastic Surgery, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan 430060, China [2]Department of Cardiovascular Medicine, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan 430060, China [3]The Second People's Hospital of China Three Gorges University, The Second People's Hospital of Yichang, Hubei, China [4]Department of Clinical Laboratory, Wuhan Center for Clinical Laboratory, Wuhan, Hubei, China [5]The Centre of Analysis and Measurement of Wuhan University, Wuhan University, Wuhan 430072, China [6]Hubei Key Laboratory of Biomass Fibers and Eco-dyeing & Finishing, Department of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430073, China
出处:
ISSN:

关键词: Qiai essential oil Graphene oxide Stimulus-responsive hydrogel Diabetic wound healing

摘要:
The management of diabetic wounds poses a substantial economic and medical burden for diabetic patients. Oxidative stress and persistent bacterial infections are considered to be the primary factors. Qiai essential oil (QEO) exhibits various pharmacological characteristics, including inflammatory-reducing, antibacterial, and antioxidant properties. Nevertheless, the hydrophobic nature and propensity for explosive release of this substance present constraints on its potential for future applications. Here, we developed a stimulus-responsive hydrogel to overcome the multiple limitations of QEO-based wound dressings. The QEO was encapsulated within graphene oxide (GO) through repeated extrusion using an extruder. Subsequently, QEO@GO nanoparticles were incorporated into a Gelatin-methacryloyl (GelMA) hydrogel. The QEO@GO-GelMA hydrogel demonstrated controlled release ablation, photothermal antibacterial effects, and contact ablation against two representative bacterial strains. It effectively reduced reactive oxygen species (ROS) generation, promoted angiogenesis, and decreased levels of the pro-inflammatory cytokine interleukin-6 (IL-6), thereby accelerating the healing process of diabetic wounds. In addition, in vitro and in vivo tests provided further evidence of the favorable biocompatibility of this multifunctional hydrogel dressing. Overall, the QEO@GO-GelMA hydrogel provides numerous benefits, encompassing antimicrobial properties, ROS-scavenging abilities, anti-inflammatory effects, and the capacity to expedite diabetic wound healing. These attributes make it an optimal choice for diabetic wound management.Copyright © 2024. Published by Elsevier B.V.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2023]版:
大类 | 1 区 化学
小类 | 1 区 应用化学 1 区 高分子科学 2 区 生化与分子生物学
最新[2025]版:
大类 | 2 区 生物学
小类 | 2 区 生化与分子生物学 2 区 应用化学 2 区 高分子科学
JCR分区:
出版当年[2022]版:
Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Q1 CHEMISTRY, APPLIED Q1 POLYMER SCIENCE
最新[2023]版:
Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Q1 CHEMISTRY, APPLIED Q1 POLYMER SCIENCE

影响因子: 最新[2023版] 最新五年平均 出版当年[2022版] 出版当年五年平均 出版前一年[2021版] 出版后一年[2023版]

第一作者:
第一作者机构: [2]Department of Cardiovascular Medicine, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan 430060, China
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:23459 今日访问量:6 总访问量:1282 更新日期:2025-04-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学附属北京同仁医院 技术支持:重庆聚合科技有限公司 地址:北京市东城区东交民巷1号(100730)