高级检索
当前位置: 首页 > 详情页

MGCNet: Multi-granularity cataract classification using denoising diffusion probabilistic model ☆

文献详情

资源类型:
WOS体系:

收录情况: ◇ SCIE

机构: [1]Zhejiang Univ Technol, Sch Comp Sci & Technol, Hangzhou, Peoples R China [2]Capital Med Univ, Cataract Ctr, Affiliated Beijing Tongren Hosp, Beijing, Peoples R China
出处:
ISSN:

关键词: Cataract classification Cataract grading Denoising diffusion probabilistic model Transformer Medical image classification

摘要:
As a first step in treatment, accurate automatic cataract diagnosis is of vital importance. The classification and grading of slit -lamp images can realize the cataract type and severity diagnosis. Deep learning models are widely applied in existing methods. However, a key challenge to improve the performance is the noise existed in medical images. Inspired by the ability of the denoising diffusion probabilistic model to generate noise -robust features in image generation tasks, this work develops a new method for cataract classification to learn and share complementary representations among multiple tasks. To alleviate the existence of general noise, a dual -branch network is proposed to combine the image generation based on the denoising diffusion probabilistic model and the target classification task effectively. A cross fusion module is further designed by two cross attention to enhance the interaction of features generated from two branches. Compared to state-ofthe-art methods, the proposed model improves the performance by a significant margin on three classification datasets and has a more robust tolerance with noise interference. Most notably, for multi -granularity cataract classification, it achieves 73.86% in Recall, 81.18% in Precision, 76.94% in F1 -Score, and 81.79% in Accuracy, which surpasses the performance of the second -place model by 7.43%, 7.07%, 6.76% and 2.37% respectively.

基金:
语种:
被引次数:
WOS:
中科院(CAS)分区:
出版当年[2023]版:
大类 | 2 区 工程技术
小类 | 2 区 计算机:硬件 2 区 仪器仪表 2 区 光学 3 区 工程:电子与电气
最新[2023]版:
大类 | 2 区 工程技术
小类 | 2 区 计算机:硬件 2 区 仪器仪表 2 区 光学 3 区 工程:电子与电气
JCR分区:
出版当年[2022]版:
Q1 INSTRUMENTS & INSTRUMENTATION Q2 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Q2 OPTICS
最新[2023]版:
Q1 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE Q1 INSTRUMENTS & INSTRUMENTATION Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Q2 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE Q2 OPTICS

影响因子: 最新[2023版] 最新五年平均 出版当年[2022版] 出版当年五年平均 出版前一年[2021版] 出版后一年[2023版]

第一作者:
第一作者机构: [1]Zhejiang Univ Technol, Sch Comp Sci & Technol, Hangzhou, Peoples R China
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:21169 今日访问量:0 总访问量:1219 更新日期:2025-01-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学附属北京同仁医院 技术支持:重庆聚合科技有限公司 地址:北京市东城区东交民巷1号(100730)