高级检索
当前位置: 首页 > 详情页

Hierarchical method for cataract grading based on retinal images using improved Haar wavelet

文献详情

资源类型:
WOS体系:

收录情况: ◇ SCIE ◇ EI

机构: [1]Beijing Inst Technol, Sch Informat & Elect, Beijing 100081, Peoples R China [2]Beijing Tongren Hosp, Beijing Inst Ophthalmol, Beijing 100730, Peoples R China
出处:
ISSN:

关键词: Cataract detection Retinal images Improved Haar wavelet Classification

摘要:
Cataracts, which are lenticular opacities that may occur at different lens locations, are the leading cause of visual impairment worldwide. Accurate and timely diagnosis can improve the quality of life of cataract patients. In this paper, a feature extraction-based method for grading cataract severity using retinal images is proposed. To obtain more appropriate features for the automatic grading, the Haar wavelet is improved according to the characteristics of retinal images. Retinal images of non-cataract, as well as mild, moderate, and severe cataracts, are automatically recognized using the improved Haar wavelet. A hierarchical strategy is used to transform the four-class classification problem into three adjacent two-class classification problems. Three sets of two-class classifiers based on a neural network are trained individually and integrated together to establish a complete classification system. The accuracies of the two-class classification (cataract and non-cataract) and four-class classification are 94.83% and 85.98%, respectively. The performance analysis demonstrates that the improved Haar wavelet feature achieves higher accuracy than the original Haar wavelet feature, and the fusion of three sets of two-class classifiers is superior to a simple four-class classifier. The discussion indicates that the retinal image-based method offers significant potential for cataract detection.

基金:
语种:
被引次数:
WOS:
中科院(CAS)分区:
出版当年[2019]版:
大类 | 1 区 工程技术
小类 | 1 区 计算机:人工智能 1 区 计算机:理论方法
最新[2023]版:
大类 | 1 区 计算机科学
小类 | 1 区 计算机:人工智能 1 区 计算机:理论方法
JCR分区:
出版当年[2018]版:
Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Q1 COMPUTER SCIENCE, THEORY & METHODS
最新[2023]版:
Q1 COMPUTER SCIENCE, THEORY & METHODS Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE

影响因子: 最新[2023版] 最新五年平均 出版当年[2018版] 出版当年五年平均 出版前一年[2017版] 出版后一年[2019版]

第一作者:
第一作者机构: [1]Beijing Inst Technol, Sch Informat & Elect, Beijing 100081, Peoples R China
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:21169 今日访问量:0 总访问量:1219 更新日期:2025-01-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学附属北京同仁医院 技术支持:重庆聚合科技有限公司 地址:北京市东城区东交民巷1号(100730)