高级检索
当前位置: 首页 > 详情页

A Hybrid Global-Local Representation CNN Model for Automatic Cataract Grading

文献详情

资源类型:
WOS体系:

收录情况: ◇ SCIE ◇ EI

机构: [1]Beijing Univ Technol, Sch Software Engn, Beijing Engn Res Ctr IoT Software & Syst, Beijing 100124, Peoples R China [2]Capital Med Univ, Beijing Tongren Hosp, Beijing Tongren Eye Ctr, Beijing 100006, Peoples R China
出处:
ISSN:

关键词: Cataract grading convolutional neural network deconvolution network hybrid global-local representation model

摘要:
Cataract is one of the most serious eye diseases leading to blindness. Early detection and treatment can reduce the rate of blindness in cataract patients. However, the professional knowledge of ophthalmologists is necessary for the clinical cataract detection. Therefore, the potential costs may make it difficult for the widespread use of cataract detection to prevent blindness. Artificial intelligence assisted diagnosis based on medical images has attracted more and more attention of researchers. Many studies have focused on the use of pre-defined feature sets for cataract classification, but the predefined feature sets may be incomplete or redundant. On account of the aforementioned issues, some studies have proposed deep learning methods to automatically extract image features, but all based on global features and none has analyzed the layer-by-layer transformation process of the middle-tier features. This paper uses convolutional neural networks (CNN) to learn useful features directly from input data, and deconvolution network method is employed to investigate how CNN characterizes cataract layer-by-layer. We found that compared to the global feature set, the detail vascular information, which is lost after multi-layer convolution calculation also plays an important role in cataract grading task. And this finding fits with the morphological definition of fundus image. Through the finding, we gained insights into the design of hybrid global-local feature representation model to improve the recognition performance of automatic cataract grading.

基金:

基金编号: 2017YFB1400803

语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2019]版:
大类 | 2 区 工程技术
小类 | 2 区 计算机:信息系统 2 区 计算机:跨学科应用 2 区 数学与计算生物学 2 区 医学:信息
最新[2023]版:
大类 | 2 区 医学
小类 | 1 区 计算机:信息系统 1 区 数学与计算生物学 2 区 计算机:跨学科应用 2 区 医学:信息
JCR分区:
出版当年[2018]版:
Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Q1 MEDICAL INFORMATICS Q1 MATHEMATICAL & COMPUTATIONAL BIOLOGY
最新[2023]版:
Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Q1 MATHEMATICAL & COMPUTATIONAL BIOLOGY Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Q1 MEDICAL INFORMATICS

影响因子: 最新[2023版] 最新五年平均 出版当年[2018版] 出版当年五年平均 出版前一年[2017版] 出版后一年[2019版]

第一作者:
第一作者机构: [1]Beijing Univ Technol, Sch Software Engn, Beijing Engn Res Ctr IoT Software & Syst, Beijing 100124, Peoples R China
共同第一作者:
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:21169 今日访问量:0 总访问量:1219 更新日期:2025-01-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学附属北京同仁医院 技术支持:重庆聚合科技有限公司 地址:北京市东城区东交民巷1号(100730)