高级检索
当前位置: 首页 > 详情页

Automated classification of angle-closure mechanisms based on anterior segment optical coherence tomography images via deep learning

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

机构: [1]Capital Med Univ, Beijing Tongren Hosp, Beijing Tongren Eye Ctr, Beijing Key Lab Ophthalmol & Visual Sci, 1 Dong Jiao Min Xiang St, Beijing 100730, Peoples R China [2]Ping An Healthcare Technol, Beijing 100027, Peoples R China [3]Beijing Inst Ophthalmol, Beijing, Peoples R China [4]Capital Med Univ, Natl Key Discipline Pediat, Minist Educ, Dept Endocrinol,Beijing Childrens Hosp, Beijing 100045, Peoples R China [5]Ping Hlth Cloud Co Ltd, Shenzhen, Peoples R China [6]Ping Int Smart City Technol Co Ltd, Shenzhen, Peoples R China [7]Harvard Med Sch, Massachusetts Eye & Ear Infirm, Dept Ophthalmol, Boston, MA USA [8]Univ Hosp Sussex NHS Fdn Trust, Sussex Eye Hosp, Brighton, Sussex, England
出处:

关键词: Deep learning Angle-closure mechanisms Anterior segment optical coherence tomography Automated classification

摘要:
Purpose: To develop and validate deep learning algorithms that can identify and classify angleclosure (AC) mechanisms using anterior segment optical coherence tomography (AS-OCT) images. Methods: This cross-sectional study included participants of the Handan Eye Study aged >= 35 years with AC detected via gonioscopy or on the AS-OCT images. These images were classified by human experts into the following to indicate the predominant AC mechanism (ground truth): pupillary block, plateau iris configuration, or thick peripheral iris roll. A deep learning architecture, known as comprehensive mechanism decision net (CMD-Net), was developed to simulate the identification of image-level AC mechanisms by human experts. Cross-validation was performed to optimize and evaluate the model. Human-machine comparisons were conducted using a held-out and separate test sets to establish generalizability. Results: In total, 11,035 AS-OCT images of 1455 participants (2833 eyes) were included. Among these, 8828 and 2.207 images were included in the cross-validation and held-out test sets, respectively. A separate test was formed comprising 228 images of 35 consecutive patients with AC detected via gonioscopy at our eye center. In the classification of AC mechanisms, CMD-Net achieved a mean area under the receiver operating characteristic curve (AUC) of 0.980, 0.977, and 0.988 in the cross-validation, held-out, and separate test sets, respectively. The bestperforming ophthalmologist achieved an AUC of 0.903 and 0.891 in the held-out and separate test sets, respectively. And CMD-Net outperformed glaucoma specialists, achieving an accuracy of 89.9 % and 93.0 % compared to 87.0 % and 86.8 % for the best-performing ophthalmologist in the held-out and separate test sets, respectively. Conclusions: Our study suggests that CMD-Net has the potential to classify AC mechanisms using AS-OCT images, though further validation is needed.

基金:
语种:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2023]版:
大类 | 3 区 综合性期刊
小类 | 3 区 综合性期刊
最新[2023]版:
大类 | 3 区 综合性期刊
小类 | 3 区 综合性期刊
JCR分区:
出版当年[2022]版:
Q2 MULTIDISCIPLINARY SCIENCES
最新[2023]版:
Q1 MULTIDISCIPLINARY SCIENCES

影响因子: 最新[2023版] 最新五年平均 出版当年[2022版] 出版当年五年平均 出版前一年[2021版] 出版后一年[2023版]

第一作者:
第一作者机构: [1]Capital Med Univ, Beijing Tongren Hosp, Beijing Tongren Eye Ctr, Beijing Key Lab Ophthalmol & Visual Sci, 1 Dong Jiao Min Xiang St, Beijing 100730, Peoples R China
共同第一作者:
通讯作者:
通讯机构: [1]Capital Med Univ, Beijing Tongren Hosp, Beijing Tongren Eye Ctr, Beijing Key Lab Ophthalmol & Visual Sci, 1 Dong Jiao Min Xiang St, Beijing 100730, Peoples R China [2]Ping An Healthcare Technol, Beijing 100027, Peoples R China [3]Beijing Inst Ophthalmol, Beijing, Peoples R China [5]Ping Hlth Cloud Co Ltd, Shenzhen, Peoples R China [6]Ping Int Smart City Technol Co Ltd, Shenzhen, Peoples R China [*1]Capital Med Univ, Beijing Tongren Hosp, Beijing Inst Ophthalmol, Beijing Tongren Eye Ctr, 1 Dong Jiao Min Xiang St, Beijing 100730, Peoples R China [*2]Beijing Key Lab Ophthalmol & Visual Sci, 1 Dong Jiao Min Xiang St, Beijing 100730, Peoples R China
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:21169 今日访问量:0 总访问量:1219 更新日期:2025-01-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学附属北京同仁医院 技术支持:重庆聚合科技有限公司 地址:北京市东城区东交民巷1号(100730)