高级检索
当前位置: 首页 > 详情页

A lightweight model for the retinal disease classification using optical coherence tomography

文献详情

资源类型:
WOS体系:

收录情况: ◇ SCIE

机构: [1]Beijing Univ Technol, Dept Biomed Engn, Beijing Int Sci & Technol Cooperat Base Intelligen, Beijing 100124, Peoples R China [2]Capital Med Univ, Beijing Tongren Hosp, Beijing Tongren Eye Ctr, Beijing Ophthalmol & Visual Sci Key Lab, Beijing 100730, Peoples R China [3]Capital Univ Phys Educ & Sports, Sports & Med Integrat Innovat Ctr, Beijing 100191, Peoples R China [4]Capital Med Univ, Beijing Boai Hosp, China Rehabil Res Ctr, Sch Rehabil Med,Dept Ophthalmol, Beijing 100068, Peoples R China
出处:
ISSN:

关键词: Deep Learning Convolutional Neural Networks Transformer Optical Coherence Tomography Retinal Disease Diagnosis

摘要:
Retinal diseases such as age-related macular degeneration and diabetic macular edema will lead to irreversible blindness without timely diagnosis and treatment. Optical coherence tomography (OCT) has been widely utilized to detect retinal diseases because of its non-contact and non-invasive imaging peculiarities. Due to the lack of ophthalmic medical resources, automatic analyzing and diagnosing retinal OCT images is necessary with computer-aided diagnosis algorithms. In this study, we propose a lightweight retinal OCT image classification model integrating convolutional neural network (CNN) and Transformer to classify various retinal diseases with few parameters of the model. Local lesion features extracted by CNN can be encoded with the whole OCT image through the Transformer, which improves the classification ability. A convolutional block attention module is also integrated into our model to enhance the representational power. Compared with several classical models, our model achieves the best accuracy of 0.9800 and recall of 0.9799 with the least number of parameters and prediction time for an image on the OCT-C8 dataset. Moreover, on the OCT2017 dataset, our model outperforms the four state-of-the-art models except almost equal to another, achieving an average accuracy, precision, recall, specificity and F1-score of 0.9985, 0.9970, 0.9970, 0.9990, and 0.9970. Simultaneously, the number of parameters of our model has been reduced to just 1.28 M, and the average prediction time for an image is only 2.5 ms.

语种:
WOS:
中科院(CAS)分区:
出版当年[2024]版:
最新[2023]版:
大类 | 2 区 医学
小类 | 3 区 工程:生物医学
JCR分区:
出版当年[2023]版:
Q1 ENGINEERING, BIOMEDICAL
最新[2023]版:
Q1 ENGINEERING, BIOMEDICAL

影响因子: 最新[2023版] 最新五年平均 出版当年[2023版] 出版当年五年平均 出版前一年[2022版]

第一作者:
第一作者机构: [1]Beijing Univ Technol, Dept Biomed Engn, Beijing Int Sci & Technol Cooperat Base Intelligen, Beijing 100124, Peoples R China
通讯作者:
通讯机构: [3]Capital Univ Phys Educ & Sports, Sports & Med Integrat Innovat Ctr, Beijing 100191, Peoples R China [4]Capital Med Univ, Beijing Boai Hosp, China Rehabil Res Ctr, Sch Rehabil Med,Dept Ophthalmol, Beijing 100068, Peoples R China
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:21169 今日访问量:0 总访问量:1219 更新日期:2025-01-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学附属北京同仁医院 技术支持:重庆聚合科技有限公司 地址:北京市东城区东交民巷1号(100730)