高级检索
当前位置: 首页 > 详情页

Attribute-aware interpretation learning for thyroid ultrasound diagnosis

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

机构: [1]Institute of Artificial Intelligence, Zhejiang University, Hangzhou 310027, China [2]Department of Otolaryngology, Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing 100005, China [3]Department of Ophthalmology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
出处:
ISSN:

关键词: Ultrasound image Thyroid nodule diagnosis Graph attention network Computer -aided diagnosis

摘要:
Thyroid nodule diagnosis from ultrasound images is a critical computer-aided diagnosis task. Previous works tried to imitate the doctor's diagnosis logic by considering the key attributes to improve the diagnosis performance and explaining the conclusion. However, their clinical feasibilities are still ambiguous because of the ignorance of the correlation between attribute features and global characteristics, as well as the lack of clinical effectiveness evaluation of result interpretations. Following the common logic of ultrasonic investigation, we design a novel Attribute-Aware Interpretation Learning (AAIL) model, consisting of attribute properties discovery module and attribute-global feature fusion module. Adequate result interpretation ensures reliability and transparency of diagnostic conclusions, including the visualization of attribute features and the relationship between attributes and the global feature. Extensive experiments on a practical dataset demonstrate the model's effectiveness, and an innovative human-computer collaborative experiment demonstrates the auxiliary diagnostic ability of the interpretations that can benefit professional doctors.

基金:

基金编号: 2019AAA0105403 2022C01044

语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2021]版:
大类 | 2 区 工程技术
小类 | 2 区 计算机:人工智能 2 区 工程:生物医学 2 区 医学:信息
最新[2023]版:
大类 | 2 区 医学
小类 | 1 区 医学:信息 2 区 计算机:人工智能 2 区 工程:生物医学
JCR分区:
出版当年[2020]版:
Q1 ENGINEERING, BIOMEDICAL Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Q1 MEDICAL INFORMATICS
最新[2023]版:
Q1 ENGINEERING, BIOMEDICAL Q1 MEDICAL INFORMATICS Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE

影响因子: 最新[2023版] 最新五年平均 出版当年[2020版] 出版当年五年平均 出版前一年[2019版] 出版后一年[2021版]

第一作者:
第一作者机构: [1]Institute of Artificial Intelligence, Zhejiang University, Hangzhou 310027, China
共同第一作者:
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:21169 今日访问量:0 总访问量:1219 更新日期:2025-01-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学附属北京同仁医院 技术支持:重庆聚合科技有限公司 地址:北京市东城区东交民巷1号(100730)