高级检索
当前位置: 首页 > 详情页

Integrating PointNet-Based Model and Machine Learning Algorithms for Classification of Rupture Status of IAs

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

机构: [1]School of Biomedical Engineering, Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, No. 10, Xitoutiao, Youanmenwai, Fengtai District, Beijing 100069, China. [2]Beijing Tongren Hospital, Key Laboratory of Otolaryngology Head and Neck Surgery, Capital Medical University, No. 1, Dongjiaominxiang, Dongcheng District, Beijing 100010, China.
出处:
ISSN:

关键词: intracranial aneurysms rupture risk hemodynamic clouds PointNet machine learning geometrical parameters hemodynamic parameters

摘要:
The rupture of intracranial aneurysms (IAs) would result in subarachnoid hemorrhage with high mortality and disability. Predicting the risk of IAs rupture remains a challenge.This paper proposed an effective method for classifying IAs rupture status by integrating a PointNet-based model and machine learning algorithms. First, medical image segmentation and reconstruction algorithms were applied to 3D Digital Subtraction Angiography (DSA) imaging data to construct three-dimensional IAs geometric models. Geometrical parameters of IAs were then acquired using Geomagic, followed by the computation of hemodynamic clouds and hemodynamic parameters using Computational Fluid Dynamics (CFD). A PointNet-based model was developed to extract different dimensional hemodynamic cloud features. Finally, five types of machine learning algorithms were applied on geometrical parameters, hemodynamic parameters, and hemodynamic cloud features to classify and recognize IAs rupture status. The classification performance of different dimensional hemodynamic cloud features was also compared.The 16-, 32-, 64-, and 1024-dimensional hemodynamic cloud features were extracted with the PointNet-based model, respectively, and the four types of cloud features in combination with the geometrical parameters and hemodynamic parameters were respectively applied to classify the rupture status of IAs. The best classification outcomes were achieved in the case of 16-dimensional hemodynamic cloud features, the accuracy of XGBoost, CatBoost, SVM, LightGBM, and LR algorithms was 0.887, 0.857, 0.854, 0.857, and 0.908, respectively, and the AUCs were 0.917, 0.934, 0.946, 0.920, and 0.944. In contrast, when only utilizing geometrical parameters and hemodynamic parameters, the accuracies were 0.836, 0.816, 0.826, 0.832, and 0.885, respectively, with AUC values of 0.908, 0.922, 0.930, 0.884, and 0.921.In this paper, classification models for IAs rupture status were constructed by integrating a PointNet-based model and machine learning algorithms. Experiments demonstrated that hemodynamic cloud features had a certain contribution weight to the classification of IAs rupture status. When 16-dimensional hemodynamic cloud features were added to the morphological and hemodynamic features, the models achieved the highest classification accuracies and AUCs. Our models and algorithms would provide valuable insights for the clinical diagnosis and treatment of IAs.

基金:
语种:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2023]版:
大类 | 3 区 医学
小类 | 4 区 工程:生物医学
最新[2023]版:
大类 | 3 区 医学
小类 | 4 区 工程:生物医学
JCR分区:
出版当年[2022]版:
Q2 ENGINEERING, BIOMEDICAL
最新[2023]版:
Q2 ENGINEERING, BIOMEDICAL

影响因子: 最新[2023版] 最新五年平均 出版当年[2022版] 出版当年五年平均 出版前一年[2021版] 出版后一年[2023版]

第一作者:
第一作者机构: [1]School of Biomedical Engineering, Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, No. 10, Xitoutiao, Youanmenwai, Fengtai District, Beijing 100069, China.
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:21166 今日访问量:0 总访问量:1219 更新日期:2025-01-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学附属北京同仁医院 技术支持:重庆聚合科技有限公司 地址:北京市东城区东交民巷1号(100730)