高级检索
当前位置: 首页 > 详情页

FTSNet: Fundus Tumor Segmentation Network on Multiple Scales Guided by Classification Results and Prompts

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

机构: [1]Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China. [2]Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China.
出处:
ISSN:

关键词: fundus tumor segmentation deep learning

摘要:
The segmentation of fundus tumors is critical for ophthalmic diagnosis and treatment, yet it presents unique challenges due to the variability in lesion size and shape. Our study introduces Fundus Tumor Segmentation Network (FTSNet), a novel segmentation network designed to address these challenges by leveraging classification results and prompt learning. Our key innovation is the multiscale feature extractor and the dynamic prompt head. Multiscale feature extractors are proficient in eliciting a spectrum of feature information from the original image across disparate scales. This proficiency is fundamental for deciphering the subtle details and patterns embedded in the image at multiple levels of granularity. Meanwhile, a dynamic prompt head is engineered to engender bespoke segmentation heads for each image, customizing the segmentation process to align with the distinctive attributes of the image under consideration. We also present the Fundus Tumor Segmentation (FTS) dataset, comprising 254 pairs of fundus images with tumor lesions and reference segmentations. Experiments demonstrate FTSNet's superior performance over existing methods, achieving a mean Intersection over Union (mIoU) of 0.8254 and mean Dice (mDice) of 0.9042. The results highlight the potential of our approach in advancing the accuracy and efficiency of fundus tumor segmentation.

基金:
语种:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2023]版:
大类 | 3 区 医学
小类 | 4 区 工程:生物医学
最新[2023]版:
大类 | 3 区 医学
小类 | 4 区 工程:生物医学
JCR分区:
出版当年[2022]版:
Q2 ENGINEERING, BIOMEDICAL
最新[2023]版:
Q2 ENGINEERING, BIOMEDICAL

影响因子: 最新[2023版] 最新五年平均 出版当年[2022版] 出版当年五年平均 出版前一年[2021版] 出版后一年[2023版]

第一作者:
第一作者机构: [1]Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:21169 今日访问量:0 总访问量:1219 更新日期:2025-01-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学附属北京同仁医院 技术支持:重庆聚合科技有限公司 地址:北京市东城区东交民巷1号(100730)